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In a study of transport processes with a relaxation kernel of general form, the distribution of the transported 

quantity is determined near a front created by perturbations emerging from a point source. This is the 

region in which the specific form of the kernel function becomes significant, since at a distance from the 

front the process is adequately described by the heat-conduction equation. General physical and 

thermodynamic conditions that must be imposed on the relaxation kernel are formulated. The distribution 

near the front is computed separately in one, two and three dimensions. 

IT IS WELL known that transport processes of very diverse kinds (heat conduction, diffusion, 
propagation of transverse modes in a viscous fluid, filtering, etc.) are governed by parabolic 
equations similar to the heat-conduction equation. These equations allow the velocity at which the 
signal propagates to become infinite, contrary to the principles of modern physics, since the velocity 
of propagation of a signal can never exceed the speed of light in a vacuum. Therefore, for a 
physically consistent theory of transport processes, one must modify the basic dynamical equation. 
One proposal [l] is to replace the parabolic equation by a hyperbolic one. It was later realized that 
the results in [l] are a special case of a more general approach, which takes into account the 
relaxation relationship between the flow of the transported quantity and its gradient [2]. This 
relationship arises quite naturally in kinetic theory and non-equilibrium statistical mechanics [3]. 
The question of the limiting velocity of a signal has been investigated [4] for a relaxation kernel of 
general form. 

1. Consider a homogeneous, isotropic medium at rest, with an attached reference frame t, x1, x2, 
x3, where x’, x2, x3 are Cartesian coordinates. Suppose that some physical quantity u = u (t, x’) (e.g. 

the temperature, the concentration of an impurity, etc.) can be transported in the medium. Let US 

assume that at equilibrium u takes a constant value, defined by the boundary conditions. We may 
assume Without loss of generality that this value is zero. The dynamics of u (t, xi) are described by 
the equation 

ut +VJ = q (1.1) 

Here J is the flow vector of u and q = q (t, xi) is the field of the sources. For a homogeneous 
isotropic medium J is usually taken as 

J = --xVu (1.2) 
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where x = const > 0 is the transport coefficient. If (1.2) is substituted into Eq. (1. l), the latter 
reduces to the heat-conduction equation 

w - XAU = q (1.3) 

where A is the Laplacian. According to (1.3), perturbations of the field u = u (t, xi) will propagate at 
infinite velocity. As shown in [4], the paradox of an infinite signal propagation velocity may be 
eliminated by replacing (1.2) with the more-general relaxation relation 

-tm 
J (t, 20 = -x s K (t -t’) vu (t’, 2) clt’ (1.4) 

-00 

The kernel K = K(t) is independent of the space coordinates; it describes intrinsic relaxation 
processes in the medium. The function K = K(t) must satisfy various conditions, of a physical and 
thermodynamic nature. 

Following [4, 51, we will list these conditions. 
If Vu varies with time, maintaining a constant direction at a given point in space, it is natural to 

assume that the corresponding flow J has the opposite direction at that point at all times. This is 
equivalent to the following conditions. 

Condition 1. K = K(t) is a non-negative function with the dimensions of (time)-‘. 
The Vu is constant in time, Eq. (1.4) must reduce to (1.2), so that 

+- 
Condition 2. 1 K (t) dt = I 

-00 

The kernel K = K(t) describes the effect of the field Vu on J. By the causality principle, Vu(t’, xi) 
cannot affect J(t, xi) if t’>t. Therefore K(t) = 0 if t<O. If t>t’ then, t-t’ increases, the effect of 
Vu(t’, xi) on J(t, xi) should diminish, that is, K(t) must be a decreasing function. Furthermore, by 
[4] the maximum signal velocity of propagation in models (1.1) and (1.4) is v = (xK(O))“*. We shall 
assume that it is finite. 

Let s[a, b] denote the space of rapidly decreasing functions in the internal [a, b], where possibly 
a = -CO or b = + UJ, i.e. the space of real infinitely differentiable functions f = f(t) in [a, b] with the 
topology defined by the denumerable set of seminorms 

Ilf II m*n - sup - tE[a, b) I tm g(t)l; n,m =O,l, 2,.. . 

Let S’[u, b] denote the space of functions dual to s[u, b], i.e. the space of continuous linear 
functionals in s[a, 61. 

In view of the above remarks, we will adopt the following assumption. 

Condition 3. The support of K = K(t) is a subset of the half-line [0, +w), Z~)la,+~, ES[O, +CO) 
and Kl~a,+,) is a monotone decreasing function. 

We will now consider the quantity 

W (a?) =I- +lmV, (t, a+) J (t, 2) dt 
-cQ 

for any sequence auiaxj (0, x’) E S [ - CQ , + a]. In any transport process, W (xi) is proportional to the 
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total entropy produced in a particle xi of the medium in a closed thermodynamic cycle. By the 
Second Law of Thermodynamics~ W(X’) is always non-negative. 

Using formula (1.41, we get the foifowing. 

Conditiorz 4. For any function fE S [ - 03, + ~1, 

Henceforth, the Fourier transform of any functionfE S ’ f- ~0, + ~1 will be denoted by fF = fF(w): 

fF (0) = I= e-iatf (t) dt 

Conditions 1-4 have various implications about the Fourier transform of the kernel, K&w). 
Following IS], we wiII list three results here. 
ju, = KF(w) is holomorphic in the lower complex half-plane w and continuous up to the real 

axis. 
Moreover, &(O) = 1, m) = KF(-G), where ImwGO and 

1 KF (0) 1< 1, Im 0 = 0 0.3 

In terms of Fourier transforms, condition 4 is equivalent to 
fm 

,s ~~~(~~~R~~~(~~~~~O 

Hence, sincefF(W) is arbitrary for w 3 0, it follows that ReKF(w) is non-negative. The fact is that 
if ReE;F(%) were to vanish, this would imply the possibility of a non-dissipative oscillatory process 
at a frequency wo. This is indeed what happens in superfluids and superconductors. We shah 
exclude this case, imposing the more stringent condition 

Re & (0) > 0, 0 E Iz (1.6) 
As 1 o I--r, f 00 one has the asymptotic expansion 

In view of (1.61, we will require here that k_,<O. Since KF(w)+O as 1~ I-+ +*, it follows from 
(1.5), (1.6) and the general theory [6,7] that the complex function KF = KF(m) maps the half-plane 
Imo<Oontosomedomaininthediskjzj~l,Rez>O,zEC. 

2. Equations (1.1) and (1.4) yield an integrodifferential equation 

which, in terms of Fourier transforms, may be written as 

(A - a%) UP = -qiJ(x&) 

Here r+ = ~~(0, xi), YF = qF(w, x”) and QL is a complex quantity, defined by 

ccs = iwl(xKp), RB 01 > 0 
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We will show that these relations in fact define a function CY = (Y(O) which is holomorphic in the 
lower complex half-plane and satisfies the strict inequality 

Re a (co) > 0, Im w < 0, o # 0 (2.3) 

Indeed, 
+- 

ImKp=- s et Irn ” sin (t Re o) K (t) dt (2.4) 
b 

It follows from (2.4) and Condition 3 that 

-Re o 

Next, 

Im Kp > 0 (2.5) 

Im (ia/&) = (Re o Re &? + Im 0 Im &?)/ 1 &f la (2.6) 

The results of Sec. 1, (2.6), (2.5) and (2.2) imply (2.3). Using (2.2) and (1.7) we obtain an 
asymptotic expansion as 10 I-3 + cQ : 

a(o) = +f a_, (io)-“, a, = (xk_,)-K = u-1, (2.7) ?I=-& 

a0 = _ 2-‘+l,k~;l’k -ar 

a-, = -2-1x-‘~*k~s”k_, + 3. 2-sdIak?~k_2a, . . . 

We shall consider the problem of the propagation of perturbations from a point source separately 
in one, two or three dimensions. The number of dimensions will be characterized by a parameter v 
(v = 1,2, 3). We write 

(I = Q (t) ti 6 (xi) 
f=l 

and the dependence of nF on the coordinates reduces to a dependence on 

Substituting the expressions for the Laplacian A = a*/&* + (v - 1) r-l alar into (2. l), we obtain 

UP = &Jo, J,, = J,, (co, r) = (~Kp)‘~(2n)+‘l~(rla)~& (czr) 

where h = (2 - v)/2, K,, = Kh (2) is the Macdonald function [8, 91. We know that 

K*, (2) = 1/ z e-' 

and we have the following asymptotic expansions for o+O (C is Euler’s constant): 

K, (2) = In @y/2) + 0 (2” In z), y = ec 

and as jwj++w: 

K, (z) = J/z e-2 E ’ (l/P + m) 
ml r (l/s - m) 

(2z)-m 

-m=dJ 

P-8) 

(2.9) 

(2.10) 
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Macdonald’s functions are analytic throughout the complex plane cut along the negative real axis. 
Let IV22 be a natural number, yj (j = 1, . . . , N+ 1) an arbitrary sequence of pairwise distinct 

positive numbers and Xi = X;(r) (j = 1, . . . , N-t 1) a sequence of functions of r, which will be 
defined later on for each specific value of V. Define functions 

N+l N+l 

‘1 = ‘1 (w) = C i~~l/j ’ 

j=l 

F, = F, 04 = >; iw$; + 202 

j=l 

such that the coefficients Xjr , Xi2 satisfy the systems of equations 

N+l N+l 

.X1 “jl,Yjl = 1,. 2 zjlyj’ = 09. k = 0, . . .,4V - 1 
j=l 

N+l 

“oa + ,?I Xj:raE/? = 07. 202 = x, 

N+l 

& “jzl/jk = (- i)“Xk+l,. k = 0, . . l ,, iv - 1 

(2.11) 

(2.12) 

Systems (2.11) and (2.12) always have unique solutions. 
To simplify matters, we will set Q(t) = AC)(t), where 0(t) is the Heaviside function. Then 

QF(o) =A(iw+~)-l, where E is a small positive number, to be set equal to zero in the final result. 
Letv=l. 
Letting o+ 0 in (2.8), we obtain the asymptotic formula 

Jo = hr (iti)-‘/* $; h, + 0 ( 1 0 p), Al = -2-1x-“*, 
A, = -2-r#-% r (2.13) 

We shall regard zI’~ as an analytic function in the complex plane cut along the negative real axis. 
Using (2.7) and (2.8) we obtain the following asymptotic expansion for 1 o /+ + 03: 

Jo 4 e-ibwlo $f xn (r) (ia)-” 
n==0 

X0 = (2xk_la,)-le-ra*, 

(2.14) 

Define a new function .I1 = J1 (0, r) by 

Jo = e-iw/* (J1 -I- (& (io)“* -!- hz) FI -k F& (2.15) 

Formulas (2.11) and (2.14) imply the asymptotic relation Jr = O(lol”*) as o--+0, 
J1= O(/OI--(N+l) ) as ( w / +- + ~0. From (2.15) we obtain the representation 

u (t, r) = ur (G r) + r&Z (G r) (2.16) 

-i- 

Ul (k r.) = $ 5 eiw ((h, (ia)-” + A.,) F1 +IFJ & 

u, (4 ‘r) = g- _ c eior ( io)-lJldo 



Structure of perturbatjon front in transport processes 833 

where T = t--r/v. Using Lebesgue’s convergence theorem, one can show that r+(r, t) is N times 
continuously differentiable. Since u2(t, r) = 0 if r<O (the P&y-Wiener Theorem [7]), it follows 
that u2 = o(p) ‘f I 12 0. Ev~~u~t~~~ of ur (t, r) by using the identity 

(io + y)” (fo + a)-’ = (y - 8)-l [(io + a)-1 - (&I + @))“I (2.17) 

reduces to evaluating integrals of the type 

The integral I, is evaluated by deforming the contour of ~~t~grat~on to the two sides of a cut by 
using formula 3.465.1 in [9], while & can be evaluated by using the Residue Theorem. We obtain 

r, = -2nly”‘4 (i (yz)“S) e-m 8 (%)* J; = 2ne+8 (z) 

where G(z) is the probability integral. Expandiu~ rP in series in terms of T, as in formula 8.253.1 of 
[9], we obtain 

Now let v = 2. 
Formufas (2.9), (2.7) and (2.10) yield 

(2.18) 

(2.19) 

(2.20) 

We wilt define a function .& = Jz(m, r) by the formula 

$0 = e-f*J+ (22 + h, fn ~~~~~l~~y~2~ Fx -+ ~~~)j~:~~~ (2.21) 

Formulas (2.19) and (2.20) imply the asymptotic relations Jz = O(l w jln 1~1) as w-+0 and 
Jz = O((oj+v+(l’z)l) as lo{-++w. 

Formula (2.21) implies the representation (2.16) with 

As before, it can be proved that ~2 (tl r) = 0 if r < 0 and uz (t, r) = o (fl) if I 2 0. evaluation of ut 
using the identity (2.17) reduces to evaluating integrals of the type 22, and also 
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These integrals are evaluated by deforming the contour of integration to the two sides of a cut, 
using formulas 3.352.6 and 3.466.2 of [9]. The results are 

I3 = ne-vz (In y - Ei (yt)) 8 (‘6) 

1, = [Z;n’k’~~ + 2niy’l~e-Z~ @ (i (yz)‘~*)] 8 (IY) 

Here Ei (z) is the integral exponential function. 
Using formulas for the series expansions of Ei (2) and a(z) (formulas 8.214.2 and 8.253.1 in [9]), 

we finally obtain 

u = An-‘/+‘% 

n==o 

(2.22) 

Let v = 3. 
Formulas (2.7) and (2.8) yield 

0 -+ 0, Jo = a4 + 0 (I 0 I'/*), A4 = (4nxr)-1 (2.23) 

I(+++ 00,. Jo = io~gxn(r)(ioy 
(2.24) 

X, = (4nxk_,r)-l e-7ao, X1 = - X, 
( 

+- + ?a, ,.*. 
-1 

We define a function J3 by means of the equation 

J,, = e-ior’v (I, + h,F, + ioF,) 

Formulas (2.23) and (2.24) imply the asymptotic relations J3 = O(l w 11’*) as o-+0 and 
J3 = O(/CO/-~) as /o/++m. 

Consider the expansion (2.16), where 

u1 (h y> = g 
S 

eior (h,F, + ioF,) & 

ua (6 r) = 2n 5 eiar (ho)-l 1, do 

Using Lebesgue’s convergence theorem, one-&r prove that z+(t, r) is N- 1 times continuously 
differentiable with respect to t. Since it vanishes when T<O (the Paley-Wiener Theorem [7]), it 
follows that when 7 3 0 we have u2 = o (TV-’ ). Evaluation of ut (f, I) using formula (2.17) reduces to 
evaluating integrals of type Z, . Expanding the final result in series we obtain 

N-l 

u(&r)=A [ x,s(z)+e(~)(CX*+1~+o(~N-‘))] 
k=o 

(2.25) 

3. Formulas (2.18), (2.22) and (2.25) constitute the main result of this paper. They enable one to 
relate the structure of the perturbation front in a transport process with relaxation to the behaviour 
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of a relaxation series for small values of the time. In principle, therefore, experimental investigation 
of the front may yield information about the kernel. 

Our main result was derived for a source represented by the Heaviside function 0 (t). 
Differentiation of formulas (2.18), (2.22) and (2.25) with respect to -T yields formulas for a source 
represented by the Dirac function 6 (t). 
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